
Sonderdruck

Coverbild erstellt mit ChatGPT (DALL·E) Deutschland € 9,80
Österreich € 10,80
Schweiz sFr 19,50

Luxemburg € 11,15

Ausgabe 2.2026

Emergente Te-
starchitektur S. 66

Neue Serie:
API Security S. 90

Fachliche Analyse: Pattern
in your Domain S. 52

Java | Architektur | Software-Innovation

magazin

SPRING RÄUMT
AUF Spring Boot 4.0 und

Spring Framework 7.0

Sonderdruck für

www.andrena.de

entwickler.dejavamagazin 2 | 20262

Sonderdruck

©
 W

hi
sk

er
z/

S
hu

tt
er

st
oc

k.
co

m

von Moritz Tiedje

Warum schreiben wir Tests? Weil effiziente agile Soft-
wareentwicklung viel Feedback braucht, und das nicht
nur im Produktmanagement, sondern schon viel früher
und häufiger in der täglichen Entwicklerarbeit. Eine agi-
le Methode, die diese Erkenntnis sehr klar verinnerlicht
hat, ist das Extreme Programming (XP). Dort gibt es
die Planungs-/Feedback-Schleifen, die in Abbildung 1 zu
sehen sind.

Dieses Bild zeigt: Wir bekommen unser erstes Feed-
back von unserem Pairing-Partner schon beim Schrei-

ben des Codes. Wenige Minuten später erfahren wir
mittels Unit-Tests, ob etwas kaputt gegangen ist und ob
unser neuer Code das tut, was er tun soll. Einmal am
Tag fragen wir uns im Stand-up-Meeting, ob wir noch
auf dem richtigen Weg sind, um unsere Ziele zu errei-
chen. Ist nach einigen Tagen ein Feature fertig gebaut,
folgt der Akzeptanztest, in dem Kunden, Fachexperten
o. Ä. die fertige Software ausprobieren und prüfen, ob
sie wunschgemäß funktioniert. Nach einigen Wochen
wird inspiziert und kontrolliert, wie gut der bisherige
Iterationsplan eingehalten wurde, ob es relevante Ent-
wicklungen am Markt gegeben hat oder ob andere Fak-

Wie man schnell, wertvoll und kosteneffizient testet

Emergente
Testarchitektur

Moderne Softwareentwicklung ist ohne automatisierte Tests nicht vorstellbar. Neu gebaute
Software muss schnell, zuverlässig und kosteneffizient validiert werden. Nur – woher weiß
ich, was kosteneffizient ist und was nicht? Wie entscheide ich, welche Tests ich schreiben
sollte? Mit Scheuklappen eine Testpyramide hochzuziehen, bringt oft nicht die erhoffte Er-
folgsgarantie, Gleiches gilt für ungebremste Unit-Test-Euphorie. Zentral ist die Architektur
unserer Testsuites: Warum muss sie emergent sein, wie kann man sie bewerten und aus
welchen Teilen besteht sie möglicherweise?

entwickler.de javamagazin 2 | 2026 3

Sonderdruck

toren aufgetreten sind, die eine Reaktion erfordern. Bei
Bedarf werden die Pläne für die nächsten Iterationen
und Releases entsprechend angepasst. Wichtig ist hier
noch, dass das gesammelte Feedback am Ende zurück
in den Code fließen muss und so auf das nächste fertige
Software-Inkrement einzahlt.

Seit den Anfängen von XP sind Jahrzehnte vergangen.
Dass wir viele Feedbackschleifen nutzen, hat sich aber
bewährt. Wenn wir uns nur auf Scrum oder ein anderes
agiles Framework beschränken und auf automatisierte
Tests und XP-Praktiken verzichten, bekommen wir mit
hoher Wahrscheinlichkeit wertvolles Feedback viel zu
spät und/oder es kommt uns teurer. Der Hauptzweck
der automatisierten Tests ist darum, Feedback zu er-
halten. Es gibt weitere Vorteile, die sich daraus ableiten
oder nützliche Nebeneffekte bilden:

•	Weniger bis kein manueller Testaufwand.
•	Tests als lebendige Dokumentation und Anforde-

rungsdefinition, die „rot“ wird, wenn sich der doku-
mentierte/getestete Systemaspekt nicht so verhält wie
beschrieben.

•	Deutlich leichtere Wartbarkeit und Erweiterbarkeit
des Systems.

Es würde den Rahmen dieses Artikels sprengen, alle
Vorzüge der und Gründe für die Testautomatisierung
aufzuzählen. Tests zu schreiben hat sich aus guten Grün-
den fast überall etabliert, wo Software entwickelt wird.

Wie erkenne ich einen guten Test?
Nicht jedes Feedback ist gleich gut. Wir können es sehr
konstruktiv äußern oder auch nicht. Ein Beispiel: Wenn
mir jemand zu diesem Artikel Feedback geben möchte,
dann kann das „Schrott“ lauten oder: „Im Abschnitt X
ist das Argument Y missverständlich. Was hältst du von
Anpassung Z?“ Ähnlich verhält es sich mit Tests. „Ir-
gendwo in Tausenden Zeilen Code funktioniert etwas
nicht so wie es soll“ ist weniger hilfreich als: „In dieser
Klasse und in dieser Methode wird bei diesem Aufruf X
erwartet, aber Y geliefert“. Testfeedback muss wertvoll
sein. Das bedeutet für automatisierte Tests, dass sie drei
Anforderungen erfüllen müssen: Erstens darf es keine
False Positives oder False Negatives geben. Zweitens
muss leicht nachvollziehbar sein, welches Szenario der
Test überprüft, und drittens muss transparent werden,
was nicht stimmt, wenn der Test fehlschlägt.

Außerdem sind Tests ein integraler Teil des Entwick-
lerworkflows. Gute Tests sind so schnell, dass sie meine
Arbeit nicht behindern. Wenn die Testsuite in Sekun-
den durchläuft, dann kann ich sie häufig ausführen und
damit Defekte schnell entdecken. Wenn sie Minuten
braucht, dann werde ich sie immer noch mehrmals am
Tag ausführen, beispielsweise, wenn ich eine Kaffeepau-
se machen möchte oder eine Codeänderung integrieren
will. Sollte die Testsuite dagegen Stunden brauchen,
dann kann ich nicht mehr fokussiert arbeiten. Mein
Workflow ist dann: „Arbeite an Thema 1“ -> „starte

Tests“ -> „arbeite an Thema 2“ -> „prüfe Testergebnis
Thema 1“ -> „zurück zu Thema 1“. Testfeedback muss
also schnell verfügbar sein.

Schließlich können Tests auch sehr teuer sein. Dem
Akronym YAGNI, „You Aren’t Gonna Need It“ [2]
sind vier Costs zugeordnet: Cost of Build, Cost of Delay,
Cost of Carry und Cost of Repair. In der Testautomati-
sierung treten diese vier Kostentypen ebenfalls auf:

•	Cost of Build: Es kostet, einen Test zu bauen.
•	Cost of Delay: Es kostet, wenn andere Features dafür

erst später an den Markt kommen.
•	Cost of Carry: Es kostet, die zusätzliche Komplexität

des Tests im Produkt zu tragen und auch, die Infra-
struktur für den Test zu betreiben.

•	Cost of Repair: Es kostet, einen Test zu warten.

Das bedeutet nicht, dass wir uns jeden Test sparen sol-
len, weil wir „ihn nicht brauchen werden“. Technische
Schulden und Defekte auf Produktivsystemen verursa-
chen Kosten, die exponentiell höher und gefährlicher
sind, als es die Kosten einer Testsuite je sein können.
Darum empfehle ich auch, im Zweifelsfall eher ein biss-
chen zu viel als zu wenig in Codequalität und Testauto-
matisierung zu investieren. Trotzdem besteht eine klare
Obergrenze – Testautomatisierung ist kein Selbstzweck:
Wir müssen unser Feedback kosteneffizient erhalten
können. Zusammengefasst: Ein guter Test gibt schnel-
les, wertvolles und kosteneffizientes Feedback.

Was hat das Schreiben von Tests mit
Softwarearchitektur zu tun?
Es gibt viele verschieden Arten von Tests, weit mehr als
nur den herkömmlichen Unit-Test:

•	Wir können das funktionale Verhalten eines Systems
testen in Unit-Tests, Integrationstests, Akzeptanz-
tests, UI-Tests, Screenshot-Tests, E2E-Tests, Con-
tract-Tests …

Abb. 1: Planungs-/Feedback-Schleifen in XP (Bildquelle [1])

entwickler.dejavamagazin 2 | 20264

Sonderdruck

•	Wir können die innere Qualität testen, indem wir
Code Smells, Linting, Test-Coverage, Mutation
Coverage … messen (Kasten „Qualitätsmetriken“).

•	Wir können Performance und Service-Level-Agree-
ments automatisiert testen.

•	Wir können Security mit Vulnerability Scans, auto-
matisierten Pen-Tests etc. testen (Kasten „Qualitäts-
metriken“)

Für jede der vielen verschiedenen Arten der Testau-
tomatisierung, die wir bauen können, steht auch eine
Vielzahl an Technologien, Frameworks und Third Party
Libraries zur Verfügung. Diese Menge an Möglichkeiten
bedeutet, dass wir Architekturentscheidungen treffen
müssen. Solche Entscheidungen sind zwar nicht in Stein
gemeißelt, lassen sich aber oft nur kostenaufwendig
korrigieren. Außerdem werden sie berücksichtigt, wenn
weitere Entscheidungen anstehen, und wirken sich da-
her langfristig aus.

Wie sieht die ideale Testarchitektur aus?
Wenn wir in die Literatur schauen, finden wir erst mal
die Testpyramide (Abb. 2). Sie kommt oft und in ver-
schiedenen Publikationen vor, mit einer variierenden
Anzahl von Schichten und deren Bezeichnungen. Grob
zusammengefasst besteht eine Testpyramide unten aus
kleineren Tests, die zahlreicher, isolierter, schneller, bil-
liger und technischer sind, und oben aus größeren Tests,

die weniger zahlreich, integrativer, langsamer, teurer
und fachlicher sind. Tests für Security, Performance
oder Qualität werden in der Testpyramide meistens
nicht berücksichtigt.

Es gibt auch andere Architekturmodelle, zum Beispiel
die „Test-Honeycomb“ [4] oder die „Test-Trophy“ [5].
In diesem Artikel können wir nicht auf alle diese Ar-
chitekturen im Detail eingehen. Jede kann in sich selbst
eine wertvolle Hilfestellung sein. Eine Gefahr, die ich in
Projekten beobachtet habe, besteht jedoch darin, dass
diese Architekturmodelle den eigentlichen Zweck der
Testarchitektur überschatten können. Eine Testarchi-
tektur ist dann gut, wenn die Testsuite schnell, wertvoll
und kosteneffizient Feedback gibt, nicht, wenn sie sich
so nah wie möglich an der Testpyramide orientiert. In
meinen Vorträgen werden mir häufig Fragen gestellt
wie „Wie viel Prozent meiner Tests sollten Unit-Tests
sein?“ (Mehr als 0 %.) oder „Wie viel Code-Coverage
sollte eine E2E-Testsuite haben?“ (Optimiert Tests auf
fachliche Dokumentation und Aussagekraft und nicht
auf Coverage, wenn ihr weit oben in der Testpyramide
unterwegs seid.) Meine Antworten auf solche Fragen
sind immer eine Version der alten Formel „Es kommt
drauf an“. Ein Beispiel: Ein gepanzertes Militärfahrzeug
im normalen Straßenverkehr wäre völlig unsinnig, das
Gleiche gilt aber umgekehrt für einen Kleinwagen im
Kriegsgebiet. Ähnlich ist es mit Testarchitekturen. Was
ein Produkt und ein Team an automatisiertem Feedback
braucht, kann sehr individuell sein. Zum Beispiel sind
die Herausforderungen in einer verteilten Microser-
vices-Landschaft mit harten Performanceanforderungen
ganz anders als in einem Legacy-Monolithen, der saniert
werden soll.

Emergente Testarchitektur
Die Kunst der emergenten Testarchitektur liegt in der
Balance zwischen zwei Planungsextremen. Das eine Ex-
trem ist bekannt als Accidental Architecture. Projekte
mit einer Accidental-Testsuite-Architektur beschäftigen

Cargo Cult

„Cargo Cult“ ist eine Metapher und bezieht sich auf einen
Mythos angeblicher Kultanhänger im afrikanischen Dschun-
gel, die Cargo-Flugzeuge ohne Motor aus Bambus nachge-
baut haben in der Hoffnung, dass sie dann fliegen können.
Es gab echte Cargo-Kulte (in Melanesien, nicht in Afrika),
die manchmal solche Flugzeug-Nachahmungen gebaut
haben. Das war aber eher eine Form des Schamanismus
und der religiösen Ahnen-Huldigung, als dass irgendjemand
geglaubt hat, dass hier ein funktionsfähiges Flugzeug ent-
steht. Ich benutze die Metapher trotzdem gern, weil sie in
der Softwarewelt vielen geläufig ist: Das Bambus-Flugzeug
ohne Motor im Inneren ist wie die voll ausgearbeitete Ar-
chitektur ohne agile Werte im Inneren. Der Fokus der Arbeit
liegt darauf, dass es wie ein Flugzeug aussieht und nicht,
dass es fliegen kann.

Qualitätsmetriken

Innere Qualität ist etwas inhärent Subjektives. Code ist dann
einfach wart- und erweiterbar, wenn Entwickler ihn einfach
warten und erweitern können, nicht, wenn Qualitätsmetriken
„grün“ sind. Qualitätsmetriken können ein hilfreiches Hin-
weis- und Verbesserungstool für Entwickler sein. Ich kenne
aber eine Myriade grusliger Geschichten von Projekten, in
denen Qualitätsmessungen mit Qualität verwechselt wurden
und dann entsprechendes Metric Fitting den Code ver-
schlimmbesserte. Die Illusion von Qualität stand dabei dem
Inspect-and-Adapt-Prozess erheblich im Weg.
Für Security-Messungen gilt Ähnliches. Bitte verfallt nicht
der Illusion von Sicherheit, nur weil ein statisches Analyse-
tool sagt, dass alle Dependencies aktuell seien.

Abb. 2: Die Testpyramide (Bildquelle [3])

entwickler.de javamagazin 2 | 2026 5

Sonderdruck

sich mit dem Thema Testarchitektur ganz einfach, näm-
lich gar nicht. Symptom einer Accidental Architecture
sind auffällige Probleme und Mängel, die über die Jah-
re immer schlimmer werden statt besser. Die Testsuite,
die vier Stunden lang rechnet, braucht irgendwann fünf
Stunden, dann sechs. Unzuverlässige Tests, die ohne gu-
ten Grund fehlschlagen, werden mittels Copy and Paste
zahlreicher, nicht seltener. In dem Projekt findet in der
Testarchitektur kein nennenswertes Inspect and Adapt
statt, weil das Know-how fehlt oder die Konsequenz
im Produktmanagement oder das Verantwortungsbe-
wusstsein. Oft liegt es auch an einer Kombination aller
drei Gründe.

Das andere Extrem nenne ich gerne den „Architektur-
plan-Cargo-Cult“ (Kasten „Cargo Cult“) Es gibt einen
Plan, der eingehalten werden muss, die Tests könnten
aber schneller, wertvoller und kosteneffizienter sein.
Was einen Architekturplan-Cargo-Cult auszeichnet, ist
die Tatsache, dass der Plan den eigentlichen Zweck der
Testautomatisierung als Ziel verdrängt hat. Ein Sym-
ptom davon ist, dass es keine Experimente mehr gibt.
Oft findet man hier auch hart durchgesetzte Regeln wie
„In den statischen Tests darf kein einziger Code Smell
gemessen werden“ oder „Jede Klasse muss eine Test-
Coverage von mindestens 80 % haben“. Inspect and
Adapt ist hier nur mit vielen Konflikten möglich. Von
der bestehenden Architektur und dem etablierten gol-
denen Pfad zur Softwarequalität abzuweichen, wird als
Häresie betrachtet und sofort unterbunden.

Accidental Architecture und Architekturplan-Cargo-
Cult sind zwei Extreme. In den meisten Projekten findet
man weder das eine noch das andere, sondern irgendein
Zwischending. Ich führe die Extreme aber gern auf, um
zu illustrieren, das weder absolute Planlosigkeit noch
absolut strikte Vorgaben erstrebenswert sind.

In der emergenten Testarchitektur geht es darum,
eine angemessene Balance zu halten. Wir wollen Archi-
tekturentwürfe wie die Testpyramide als Hilfestellung
nutzen, schon allein, um nicht von null an eine eigene

Testarchitektur erarbeiten zu müssen. Ziel unserer Ar-
beit soll aber wertvolles, schnelles und kosteneffizientes
Feedback sein, nicht eine perfekte Testpyramide. Ab
und zu sollten Experimente möglich sein, in denen wir
neue Technologien, Architekturen und Ansätze auspro-
bieren.

Emergente Testarchitektur: Inspect and Adapt
Wie gut oder schlecht der aktuelle Architekturansatz
funktioniert, ist oft schwer zu bewerten. Gute Testar-
chitektur hat viele Aspekte; sie alle gleichzeitig disku-
tieren zu wollen führt oft zu Chaos, anstrengenden, fast
endlosen Auseinandersetzungen und letztendlich wenig
Veränderung. Die Übersicht in Tabelle 1 enthält aus
der Praxis entstandene Kriterien, um Bewertungen von
Testarchitekturschichten besser zu strukturieren.

Es ist schwer, klare Vorgaben für die Anpassung
(„Adapt“) einer Testarchitektur zu geben. Wenn im In-
spect-Schritt sinnvolle Ergebnisse entstanden sind, soll-
ten aber bereits ein paar offensichtliche Adapt-Schritte
sichtbar geworden sein. Eine simple Adapt-Heuristik ist
„Accept, Mitigate, Eliminate“:

•	Accept: Kosten und Nutzen dieser Testsuite stehen in
einem angemessenen Verhältnis zueinander.

•	Mitigate: Wir wollen etwas anpassen, damit die Suite
schneller, kosteneffizienter und/oder wertvoller wird.
Diese Mitigationen setzen oft Know-how und Exper-
tenwissen voraus. Zum Beispiel könnte man die Cost

Schnell

Repeatability Wie oft führen wir die Tests aus?

Time Wie lange warten wir auf Ergebnisse?

Wertvoll

Stability Wie zuverlässig laufen die Tests?

Coverage Was decken wir mit dieser Suite ab?

Useful Failures Schlagen die Tests aus hilfreichen Gründen fehl?

Debugability Wie leicht finden wir den entsprechenden Defekt, wenn ein Test fehlschlägt?

Readability Wie gut kann das Verhalten des Systems anhand des Tests nachvollzogen werden?

Kosteneffizient

Cost of Build Wie viel Implementieraufwand kostet uns diese Testschicht?

Cost of Carry – Cognitive Load Wie viel komplizierter wird das System mit dieser Testschicht?

Cost of Carry – Infrastructure Welche Infrastruktur wird benötigt und wie teuer ist sie?

Cost of Repair Wie oft müssen wir die Tests warten? Wie teuer ist das?

Tabelle 1: Bewertung einer Testarchitektur

Ziel unserer Arbeit soll wertvolles,
schnelles und kosteneffizientes
Feedback sein, nicht eine
perfekte Testpyramide.

entwickler.dejavamagazin 2 | 20266

Sonderdruck

of Repair einer UI-Testsuite deutlich reduzieren, in-
dem man Page Objects anstelle von statischen Pfaden
benutzt. Oder man könnte die Dauer einer Spring-
Integrations-Testsuite reduzieren, indem man den
gesamten Spring-Kontext seltener und nicht immer
komplett hochfährt.

•	Eliminate: Die Suite ist zu langsam, zu wertlos und/
oder zu teuer, um eine Existenzberechtigung zu haben.
Wir werden sie ersetzen, archivieren oder löschen.

Beispiel aus der Praxis
In der Praxis ist es nicht sinnvoll oder pragmatisch,
alle Aspekte aus Tabelle 1 ausgiebig zu bewerten. Man
kann sich die Fragen aussuchen, die relevant erscheinen,
sich bei den Entwicklern für jede Testschicht ein erstes
Stimmungsbild abholen und die nicht offensichtlichen
Kandidaten im Team durchsprechen. Mit ein bisschen
visueller Unterstützung erhält man dann ein Ergebnis,
das helfen kann, sinnvolle Entscheidungen zu treffen.
Abbildung 3 zeigt ein anonymisiertes Beispiel einer Test-
architekturbewertung aus einem meiner Projekte.

In diesem Beispiel gab es drei von fünf Testschich-
ten, an die wir schnell ein „Accept“ setzen konnten:
Unit-Tests, Integrations- und Contract-Tests. End-to-
End-Tests brachten in diesem Projekt zwar einen ein-
zigartigen Mehrwert, waren aber derart aufwendig,
dass das Kosteneffizienzkalkül nicht aufging. Daher
trafen wir die Entscheidung, die End-to-End-Testsuite
nach und nach zu reduzieren und mehr in Contract- und
Integration-Tests zu investieren. Die Performance-Tests
waren in diesem Projekt unverzichtbar, wie man an der
Spalte „Mehrwert“ erkennt. Der Cognitive Load war
jedoch so hoch, dass das Problem trotzdem mitigiert
werden musste. Wir entschieden, die Performance-Tests
von Scala in Java umzuschreiben, da Java ohnehin schon
weitläufig im Projekt in Verwendung war.

Fazit
Test sind kein Selbstzweck oder ein Nice-to-Have, son-
dern ein fundamentaler Feedback-Mechanismus. Unse-

re Tests müssen dieses Feedback schnell, wertvoll und
kosteneffizient liefern. Auf die Frage, welche Testschich-
ten und welche Testarchitektur richtig sind, gibt es keine
allgemeingültige Antwort. Wichtig ist, dass die Testar-
chitektur emergent ist. Das bedeutet, dass wir dann Ent-
scheidungen treffen, wenn wir es müssen, und dabei eine
Balance suchen zwischen den beiden Extremen, immer
nur das Erstbeste zu nehmen (Accidental Architecture)
oder alles im Voraus festzulegen (Architektur-Cargo-
Cult).

Um das zu erreichen, müssen wir uns bewusst Zeit für
Entscheidungen nehmen und strukturiert vorgehen. In
diesem Artikel gebe ich eine Struktur vor, von der man
jederzeit abweichen darf, so wie im geschilderten Praxis-
beispiel. Mit ein wenig Inspect and Adapt zum richtigen
Zeitpunkt lässt sich so gegebenenfalls eine Menge vor-
hersehbarer Ärger und Stress mit Testautomatisierung
vermeiden.

Moritz Tiedje ist seit 2015 professioneller Softwareentwickler
bei andrena objects und beschäftigt sich mit allem, was hilft,
Software effizienter und wertvoller zu entwickeln. Dabei kon-
zentriert er sich hauptsächlich auf agile Software-Engineering-
Praktiken und Softwarearchitektur. Auch verwandten Bereichen

wie agile Frameworks, Coaching-Methoden, IT-Security, Moderationstech-
niken, Teamdynamiken usw. gilt sein Interesse. Seine Projekte haben ihm
gezeigt, dass Herausforderungen selten nur technischer Natur sind.

Abb. 3: Beispiel für die Bewertung einer Testarchitektur

Links & Literatur

[1] �Beck, Kent: „Extreme Programming Explained: Embrace Change“, Addison-
Wesley, 2004

[2] Fowler, Martin: „YAGNI“: https://martinfowler.com/bliki/Yagni.html

[3] �Vocke, Ham: „Test Pyramid“: https://martinfowler.com/articles/practical-
test-pyramid.html

[4] �Schaffer, André: „Testing Microservices“: https://engineering.atspotify.
com/2018/01/testing-of-microservices

[5] �Dodds, Kent C.: „Test Trophy“; https://kentcdodds.com/blog/the-testing-
trophy-and-testing-classifications

