Fachliche Analyse: Pattern Emergente Te- Neue Serie:
in your Domain s.52 starchitektur s.66 API Security s. 90

Javamagazin

Java | Architektur | Software-Innovation

SPRING RAUMT

A U Spring Boot 4.0 und
Spring Framework 7.0

P Cloae =~
. i LW, et e __I-é.r.d..
s
» Ausgabe 2.2026
- Deutschland €9,80
Osterreich 10,80
SchweizssFr 19,50

Luxemburg €11,15
= A

L
. .
02
iy -
4194586709801

-t -4 .] .‘-‘

Sonderdruck

java

Javamagazin

Moderne Softwareentwicklung ist ohne automatisierte Tests nicht vorstellbar. Neu gebaute
Software muss schnell, zuverlassig und kosteneffizient validiert werden. Nur — woher weif
ich, was kosteneffizient ist und was nicht? Wie entscheide ich, welche Tests ich schreiben
sollte? Mit Scheuklappen eine Testpyramide hochzuziehen, bringt oft nicht die erhoffte Er-
folgsgarantie, Gleiches gilt flir ungebremste Unit-Test-Euphorie. Zentral ist die Architektur
unserer Testsuites: Warum muss sie emergent sein, wie kann man sie bewerten und aus

welchen Teilen besteht sie moglicherweise?

von Moritz Tiedje

Warum schreiben wir Tests? Weil effiziente agile Soft-
wareentwicklung viel Feedback braucht, und das nicht
nur im Produktmanagement, sondern schon viel frither
und haufiger in der tiglichen Entwicklerarbeit. Eine agi-
le Methode, die diese Erkenntnis sehr klar verinnerlicht
hat, ist das Extreme Programming (XP). Dort gibt es
die Planungs-/Feedback-Schleifen, die in Abbildung 1 zu
sehen sind.

Dieses Bild zeigt: Wir bekommen unser erstes Feed-
back von unserem Pairing-Partner schon beim Schrei-

ben des Codes. Wenige Minuten spiter erfahren wir
mittels Unit-Tests, ob etwas kaputt gegangen ist und ob
unser neuer Code das tut, was er tun soll. Einmal am
Tag fragen wir uns im Stand-up-Meeting, ob wir noch
auf dem richtigen Weg sind, um unsere Ziele zu errei-
chen. Ist nach einigen Tagen ein Feature fertig gebaut,
folgt der Akzeptanztest, in dem Kunden, Fachexperten
o. A. die fertige Software ausprobieren und priifen, ob
sie wunschgemif$ funktioniert. Nach einigen Wochen
wird inspiziert und kontrolliert, wie gut der bisherige
Iterationsplan eingehalten wurde, ob es relevante Ent-
wicklungen am Markt gegeben hat oder ob andere Fak-

entwickler.de

© Whiskerz/Shutterstock.com

Javamagazin

toren aufgetreten sind, die eine Reaktion erfordern. Bei
Bedarf werden die Pline fiir die nichsten Iterationen
und Releases entsprechend angepasst. Wichtig ist hier
noch, dass das gesammelte Feedback am Ende zuriick
in den Code flieffen muss und so auf das nichste fertige
Software-Inkrement einzahlt.

Seit den Anfingen von XP sind Jahrzehnte vergangen.
Dass wir viele Feedbackschleifen nutzen, hat sich aber
bewihrt. Wenn wir uns nur auf Scrum oder ein anderes
agiles Framework beschrinken und auf automatisierte
Tests und XP-Praktiken verzichten, bekommen wir mit
hoher Wahrscheinlichkeit wertvolles Feedback viel zu
spat und/oder es kommt uns teurer. Der Hauptzweck
der automatisierten Tests ist darum, Feedback zu er-
halten. Es gibt weitere Vorteile, die sich daraus ableiten
oder niitzliche Nebeneffekte bilden:

® Weniger bis kein manueller Testaufwand.

® Tests als lebendige Dokumentation und Anforde-
rungsdefinition, die ,,rot* wird, wenn sich der doku-
mentierte/getestete Systemaspekt nicht so verhilt wie
beschrieben.

¢ Deutlich leichtere Wartbarkeit und Erweiterbarkeit
des Systems.

Es wiirde den Rahmen dieses Artikels sprengen, alle
Vorziige der und Griinde fiir die Testautomatisierung
aufzuzihlen. Tests zu schreiben hat sich aus guten Griin-
den fast iiberall etabliert, wo Software entwickelt wird.

Wie erkenne ich einen guten Test?
Nicht jedes Feedback ist gleich gut. Wir konnen es sehr
konstruktiv dufSern oder auch nicht. Ein Beispiel: Wenn
mir jemand zu diesem Artikel Feedback geben méchte,
dann kann das ,,Schrott“ lauten oder: ,,Im Abschnitt X
ist das Argument Y missverstindlich. Was hiltst du von
Anpassung Z?“ Ahnlich verhilt es sich mit Tests. ,,Ir-
gendwo in Tausenden Zeilen Code funktioniert etwas
nicht so wie es soll“ ist weniger hilfreich als: ,,In dieser
Klasse und in dieser Methode wird bei diesem Aufruf X
erwartet, aber Y geliefert®. Testfeedback muss wertvoll
sein. Das bedeutet fiir automatisierte Tests, dass sie drei
Anforderungen erfiillen mussen: Erstens darf es keine
False Positives oder False Negatives geben. Zweitens
muss leicht nachvollziehbar sein, welches Szenario der
Test iiberpriift, und drittens muss transparent werden,
was nicht stimmt, wenn der Test fehlschlagt.
Auflerdem sind Tests ein integraler Teil des Entwick-
lerworkflows. Gute Tests sind so schnell, dass sie meine
Arbeit nicht behindern. Wenn die Testsuite in Sekun-
den durchliuft, dann kann ich sie hiufig ausfithren und
damit Defekte schnell entdecken. Wenn sie Minuten
braucht, dann werde ich sie immer noch mehrmals am
Tag ausfiihren, beispielsweise, wenn ich eine Kaffeepau-
se machen mochte oder eine Codednderung integrieren
will. Sollte die Testsuite dagegen Stunden brauchen,
dann kann ich nicht mehr fokussiert arbeiten. Mein
Workflow ist dann: ,Arbeite an Thema 1% -> , starte

entwickler.de

Sonderdruck

Planungs-/Feedback-Schleifen

Release Plan

Monate
Iteration Plan

Wachen

Acceptance Test

Tage
Stand Up Meeting

Ein Tag

Pair Negotiation
Smunden

Unit Test

Minuten

Pair Programming

Code

Abb. 1: Planungs-/Feedback-Schleifen in XP (Bildquelle [1])

Tests“ -> ,,arbeite an Thema 2 -> ,,priife Testergebnis
Thema 1 -> ,,zuriick zu Thema 1. Testfeedback muss
also schnell verfugbar sein.

Schliefflich konnen Tests auch sehr teuer sein. Dem
Akronym YAGNI, ,,You Aren’t Gonna Need It [2]
sind vier Costs zugeordnet: Cost of Build, Cost of Delay,
Cost of Carry und Cost of Repair. In der Testautomati-
sierung treten diese vier Kostentypen ebenfalls auf:

¢ Cost of Build: Es kostet, einen Test zu bauen.

¢ Cost of Delay: Es kostet, wenn andere Features dafiir
erst spater an den Markt kommen.

¢ Cost of Carry: Es kostet, die zusitzliche Komplexitit
des Tests im Produkt zu tragen und auch, die Infra-
struktur fiir den Test zu betreiben.

e Cost of Repair: Es kostet, einen Test zu warten.

Das bedeutet nicht, dass wir uns jeden Test sparen sol-
len, weil wir ,,ihn nicht brauchen werden*. Technische
Schulden und Defekte auf Produktivsystemen verursa-
chen Kosten, die exponentiell hoher und gefdhrlicher
sind, als es die Kosten einer Testsuite je sein konnen.
Darum empfehle ich auch, im Zweifelsfall eher ein biss-
chen zu viel als zu wenig in Codequalitit und Testauto-
matisierung zu investieren. Trotzdem besteht eine klare
Obergrenze — Testautomatisierung ist kein Selbstzweck:
Wir missen unser Feedback kosteneffizient erhalten
konnen. Zusammengefasst: Ein guter Test gibt schnel-
les, wertvolles und kosteneffizientes Feedback.

Was hat das Schreiben von Tests mit
Softwarearchitektur zu tun?

Es gibt viele verschieden Arten von Tests, weit mehr als
nur den herkdmmlichen Unit-Test:

® Wir konnen das funktionale Verhalten eines Systems
testen in Unit-Tests, Integrationstests, Akzeptanz-
tests, UI-Tests, Screenshot-Tests, E2E-Tests, Con-
tract-Tests ...

java

4

Sonderdruck

java

more + slower
integration
Service Tests
more Unit Tests
isolation ' ! faster

Abb. 2: Die Testpyramide (Bildquelle [3])

¢ Wir konnen die innere Qualitit testen, indem wir
Code Smells, Linting, Test-Coverage, Mutation
Coverage ... messen (Kasten ,,Qualitatsmetriken®).

® Wir konnen Performance und Service-Level-Agree-
ments automatisiert testen.

e Wir konnen Security mit Vulnerability Scans, auto-
matisierten Pen-Tests etc. testen (Kasten ,,Qualitats-
metriken)

Fiir jede der vielen verschiedenen Arten der Testau-
tomatisierung, die wir bauen konnen, steht auch eine
Vielzahl an Technologien, Frameworks und Third Party
Libraries zur Verfiigung. Diese Menge an Moglichkeiten
bedeutet, dass wir Architekturentscheidungen treffen
miissen. Solche Entscheidungen sind zwar nicht in Stein
gemeiflelt, lassen sich aber oft nur kostenaufwendig
korrigieren. AuSerdem werden sie beriicksichtigt, wenn
weitere Entscheidungen anstehen, und wirken sich da-
her langfristig aus.

Wie sieht die ideale Testarchitektur aus?

Wenn wir in die Literatur schauen, finden wir erst mal
die Testpyramide (Abb. 2). Sie kommt oft und in ver-
schiedenen Publikationen vor, mit einer variierenden
Anzahl von Schichten und deren Bezeichnungen. Grob
zusammengefasst besteht eine Testpyramide unten aus
kleineren Tests, die zahlreicher, isolierter, schneller, bil-
liger und technischer sind, und oben aus grofSeren Tests,

Qualitatsmetriken

Innere Qualitat ist etwas inharent Subjektives. Code ist dann
einfach wart- und erweiterbar, wenn Entwickler ihn einfach
warten und erweitern konnen, nicht, wenn Qualitatsmetriken
L8rin“ sind. Qualitdtsmetriken konnen ein hilfreiches Hin-
weis- und Verbesserungstool fiir Entwickler sein. Ich kenne
aber eine Myriade grusliger Geschichten von Projekten, in
denen Qualitdtsmessungen mit Qualitit verwechselt wurden
und dann entsprechendes Metric Fitting den Code ver-
schlimmbesserte. Die lllusion von Qualitat stand dabei dem
Inspect-and-Adapt-Prozess erheblich im Weg.

Fiir Security-Messungen gilt Ahnliches. Bitte verfallt nicht
der lllusion von Sicherheit, nur weil ein statisches Analyse-
tool sagt, dass alle Dependencies aktuell seien.

Javamagazin

die weniger zahlreich, integrativer, langsamer, teurer
und fachlicher sind. Tests fiir Security, Performance
oder Qualitit werden in der Testpyramide meistens
nicht berticksichtigt.

Es gibt auch andere Architekturmodelle, zum Beispiel
die ,, Test-Honeycomb* [4] oder die ,, Test-Trophy* [5].
In diesem Artikel konnen wir nicht auf alle diese Ar-
chitekturen im Detail eingehen. Jede kann in sich selbst
eine wertvolle Hilfestellung sein. Eine Gefahr, die ich in
Projekten beobachtet habe, besteht jedoch darin, dass
diese Architekturmodelle den eigentlichen Zweck der
Testarchitektur iiberschatten konnen. Eine Testarchi-
tektur ist dann gut, wenn die Testsuite schnell, wertvoll
und kosteneffizient Feedback gibt, nicht, wenn sie sich
so nah wie moglich an der Testpyramide orientiert. In
meinen Vortrigen werden mir hiufig Fragen gestellt
wie ,,Wie viel Prozent meiner Tests sollten Unit-Tests
sein?“ (Mehr als 0 %.) oder ,,Wie viel Code-Coverage
sollte eine E2E-Testsuite haben?“ (Optimiert Tests auf
fachliche Dokumentation und Aussagekraft und nicht
auf Coverage, wenn ihr weit oben in der Testpyramide
unterwegs seid.) Meine Antworten auf solche Fragen
sind immer eine Version der alten Formel ,,Es kommt
drauf an“. Ein Beispiel: Ein gepanzertes Militarfahrzeug
im normalen Strafsenverkehr wire vollig unsinnig, das
Gleiche gilt aber umgekehrt fiir einen Kleinwagen im
Kriegsgebiet. Ahnlich ist es mit Testarchitekturen. Was
ein Produkt und ein Team an automatisiertem Feedback
braucht, kann sehr individuell sein. Zum Beispiel sind
die Herausforderungen in einer verteilten Microser-
vices-Landschaft mit harten Performanceanforderungen
ganz anders als in einem Legacy-Monolithen, der saniert
werden soll.

Emergente Testarchitektur

Die Kunst der emergenten Testarchitektur liegt in der
Balance zwischen zwei Planungsextremen. Das eine Ex-
trem ist bekannt als Accidental Architecture. Projekte
mit einer Accidental-Testsuite-Architektur beschiftigen

Cargo Cult

»Cargo Cult“ ist eine Metapher und bezieht sich auf einen
Mythos angeblicher Kultanh&nger im afrikanischen Dschun-
gel, die Cargo-Flugzeuge ohne Motor aus Bambus nachge-
baut haben in der Hoffnung, dass sie dann fliegen konnen.
Es gab echte Cargo-Kulte (in Melanesien, nicht in Afrika),
die manchmal solche Flugzeug-Nachahmungen gebaut
haben. Das war aber eher eine Form des Schamanismus
und der religiosen Ahnen-Huldigung, als dass irgendjemand
geglaubt hat, dass hier ein funktionsfahiges Flugzeug ent-
steht. Ich benutze die Metapher trotzdem gern, weil sie in
der Softwarewelt vielen geldufig ist: Das Bambus-Flugzeug
ohne Motor im Inneren ist wie die voll ausgearbeitete Ar-
chitektur ohne agile Werte im Inneren. Der Fokus der Arbeit
liegt darauf, dass es wie ein Flugzeug aussieht und nicht,
dass es fliegen kann.

entwickler.de

Javamagazin

sich mit dem Thema Testarchitektur ganz einfach, nim-
lich gar nicht. Symptom einer Accidental Architecture
sind auffillige Probleme und Mingel, die tiber die Jah-
re immer schlimmer werden statt besser. Die Testsuite,
die vier Stunden lang rechnet, braucht irgendwann funf
Stunden, dann sechs. Unzuverlissige Tests, die ohne gu-
ten Grund fehlschlagen, werden mittels Copy and Paste
zahlreicher, nicht seltener. In dem Projekt findet in der
Testarchitektur kein nennenswertes Inspect and Adapt
statt, weil das Know-how fehlt oder die Konsequenz
im Produktmanagement oder das Verantwortungsbe-
wusstsein. Oft liegt es auch an einer Kombination aller
drei Grinde.

Das andere Extrem nenne ich gerne den ,,Architektur-
plan-Cargo-Cult“ (Kasten ,,Cargo Cult®) Es gibt einen
Plan, der eingehalten werden muss, die Tests konnten
aber schneller, wertvoller und kosteneffizienter sein.
Was einen Architekturplan-Cargo-Cult auszeichnet, ist
die Tatsache, dass der Plan den eigentlichen Zweck der
Testautomatisierung als Ziel verdrangt hat. Ein Sym-
ptom davon ist, dass es keine Experimente mehr gibt.
Oft findet man hier auch hart durchgesetzte Regeln wie
»In den statischen Tests darf kein einziger Code Smell
gemessen werden“ oder ,,Jede Klasse muss eine Test-
Coverage von mindestens 80 % haben“. Inspect and
Adapt ist hier nur mit vielen Konflikten moglich. Von
der bestehenden Architektur und dem etablierten gol-
denen Pfad zur Softwarequalitit abzuweichen, wird als
Hiresie betrachtet und sofort unterbunden.

Accidental Architecture und Architekturplan-Cargo-
Cult sind zwei Extreme. In den meisten Projekten findet
man weder das eine noch das andere, sondern irgendein
Zwischending. Ich fithre die Extreme aber gern auf, um
zu illustrieren, das weder absolute Planlosigkeit noch
absolut strikte Vorgaben erstrebenswert sind.

In der emergenten Testarchitektur geht es darum,
eine angemessene Balance zu halten. Wir wollen Archi-
tekturentwiirfe wie die Testpyramide als Hilfestellung
nutzen, schon allein, um nicht von null an eine eigene

Sonderdruck

Testarchitektur erarbeiten zu mussen. Ziel unserer Ar-
beit soll aber wertvolles, schnelles und kosteneffizientes
Feedback sein, nicht eine perfekte Testpyramide. Ab
und zu sollten Experimente moglich sein, in denen wir
neue Technologien, Architekturen und Ansitze auspro-
bieren.

Emergente Testarchitektur: Inspect and Adapt

Wie gut oder schlecht der aktuelle Architekturansatz
funktioniert, ist oft schwer zu bewerten. Gute Testar-
chitektur hat viele Aspekte; sie alle gleichzeitig disku-
tieren zu wollen fithrt oft zu Chaos, anstrengenden, fast
endlosen Auseinandersetzungen und letztendlich wenig
Verinderung. Die Ubersicht in Tabelle 1 enthilt aus
der Praxis entstandene Kriterien, um Bewertungen von
Testarchitekturschichten besser zu strukturieren.

Es ist schwer, klare Vorgaben fiir die Anpassung
(,,Adapt“) einer Testarchitektur zu geben. Wenn im In-
spect-Schritt sinnvolle Ergebnisse entstanden sind, soll-
ten aber bereits ein paar offensichtliche Adapt-Schritte
sichtbar geworden sein. Eine simple Adapt-Heuristik ist
»Accept, Mitigate, Eliminate*:

e Accept: Kosten und Nutzen dieser Testsuite stehen in
einem angemessenen Verhiltnis zueinander.

e Mitigate: Wir wollen etwas anpassen, damit die Suite
schneller, kosteneffizienter und/oder wertvoller wird.
Diese Mitigationen setzen oft Know-how und Exper-
tenwissen voraus. Zum Beispiel konnte man die Cost

Repeatability

Time

Wie oft fihren wir die Tests aus?

Wie lange warten wir auf Ergebnisse?

Stability
Coverage

Useful Failures
Debugability
Readability
Kosteneffizient

Wie zuverlassig laufen die Tests?

Was decken wir mit dieser Suite ab?

Schlagen die Tests aus hilfreichen Griinden fehl?

Wie leicht finden wir den entsprechenden Defekt, wenn ein Test fehlschlagt?

Wie gut kann das Verhalten des Systems anhand des Tests nachvollzogen werden?

Cost of Build
Cost of Carry — Cognitive Load
Cost of Carry — Infrastructure

Cost of Repair

Tabelle 1: Bewertung einer Testarchitektur

entwickler.de

Wie viel Implementieraufwand kostet uns diese Testschicht?
Wie viel komplizierter wird das System mit dieser Testschicht?
Welche Infrastruktur wird bendtigt und wie teuer ist sie?

Wie oft missen wir die Tests warten? Wie teuer ist das?

java

Sonderdruck

Javamagazin

java

@ EEE ® |e

) e |8

©

©e0

(oo (e
sy 4

@ ©

ee lose

?'¢.:'ﬂ"¢ (-] L I’\.’l—u‘\l
=Neefa/\s)

! st

(:\',)

Abb. 3: Beispiel fir die Bewertung einer Testarchitektur

of Repair einer Ul-Testsuite deutlich reduzieren, in-
dem man Page Objects anstelle von statischen Pfaden
benutzt. Oder man konnte die Dauer einer Spring-
Integrations-Testsuite reduzieren, indem man den
gesamten Spring-Kontext seltener und nicht immer
komplett hochfahrt.

e Eliminate: Die Suite ist zu langsam, zu wertlos und/
oder zu teuer, um eine Existenzberechtigung zu haben.
Wir werden sie ersetzen, archivieren oder 16schen.

Beispiel aus der Praxis

In der Praxis ist es nicht sinnvoll oder pragmatisch,
alle Aspekte aus Tabelle 1 ausgiebig zu bewerten. Man
kann sich die Fragen aussuchen, die relevant erscheinen,
sich bei den Entwicklern fiir jede Testschicht ein erstes
Stimmungsbild abholen und die nicht offensichtlichen
Kandidaten im Team durchsprechen. Mit ein bisschen
visueller Unterstiitzung erhilt man dann ein Ergebnis,
das helfen kann, sinnvolle Entscheidungen zu treffen.
Abbildung 3 zeigt ein anonymisiertes Beispiel einer Test-
architekturbewertung aus einem meiner Projekte.

In diesem Beispiel gab es drei von fiinf Testschich-
ten, an die wir schnell ein ,,Accept® setzen konnten:
Unit-Tests, Integrations- und Contract-Tests. End-to-
End-Tests brachten in diesem Projekt zwar einen ein-
zigartigen Mehrwert, waren aber derart aufwendig,
dass das Kosteneffizienzkalkiil nicht aufging. Daher
trafen wir die Entscheidung, die End-to-End-Testsuite
nach und nach zu reduzieren und mehr in Contract- und
Integration-Tests zu investieren. Die Performance-Tests
waren in diesem Projekt unverzichtbar, wie man an der
Spalte ,Mehrwert“ erkennt. Der Cognitive Load war
jedoch so hoch, dass das Problem trotzdem mitigiert
werden musste. Wir entschieden, die Performance-Tests
von Scala in Java umzuschreiben, da Java ohnehin schon
weitldufig im Projekt in Verwendung war.

Fazit

Test sind kein Selbstzweck oder ein Nice-to-Have, son-
dern ein fundamentaler Feedback-Mechanismus. Unse-

re Tests miissen dieses Feedback schnell, wertvoll und
kosteneffizient liefern. Auf die Frage, welche Testschich-
ten und welche Testarchitektur richtig sind, gibt es keine
allgemeingiltige Antwort. Wichtig ist, dass die Testar-
chitektur emergent ist. Das bedeutet, dass wir dann Ent-
scheidungen treffen, wenn wir es miissen, und dabei eine
Balance suchen zwischen den beiden Extremen, immer
nur das Erstbeste zu nehmen (Accidental Architecture)
oder alles im Voraus festzulegen (Architektur-Cargo-
Cult).

Um das zu erreichen, miissen wir uns bewusst Zeit fiir
Entscheidungen nehmen und strukturiert vorgehen. In
diesem Artikel gebe ich eine Struktur vor, von der man
jederzeit abweichen darf, so wie im geschilderten Praxis-
beispiel. Mit ein wenig Inspect and Adapt zum richtigen
Zeitpunkt lisst sich so gegebenenfalls eine Menge vor-
hersehbarer Arger und Stress mit Testautomatisierung
vermeiden.

Moritz Tiedje ist seit 2015 professioneller Softwareentwickler
bei andrena objects und beschéftigt sich mit allem, was hilft,
Software effizienter und wertvoller zu entwickeln. Dabei kon-
zentriert er sich hauptséchlich auf agile Software-Engineering-
Praktiken und Softwarearchitektur. Auch verwandten Bereichen
wie agile Frameworks, Coaching-Methoden, IT-Security, Moderationstech-
niken, Teamdynamiken usw. gilt sein Interesse. Seine Projekte haben ihm
gezeigt, dass Herausforderungen selten nur technischer Natur sind.

Links & Literatur

[1] Beck, Kent: ,Extreme Programming Explained: Embrace Change®, Addison-
Wesley, 2004

[2] Fowler, Martin: ,YAGNI“: https://martinfowler.com/bliki/Yagni.html

[3] Vocke, Ham: ,Test Pyramid“: https://martinfowler.com/articles/practical-
test-pyramid.html

[4] Schaffer, André: ,Testing Microservices”: https://engineering.atspotify.
com/2018/01/testing-of-microservices

[5] Dodds, Kent C.: ,Test Trophy*; https://kentcdodds.com/blog/the-testing-
trophy-and-testing-classifications

entwickler.de

